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Imaging genetics is an emerging field for the investigation of neuro-mechanisms linked

to genetic variation. Although imaging genetics has recently shown great promise in

understanding biological mechanisms for brain development and psychiatric disorders,

studying the link between genetic variants and neuroimaging phenotypes remains

statistically challenging due to the high-dimensionality of both genetic and neuroimaging

data. This becomes even more challenging when studying gene-environment interaction

(G×E) on neuroimaging phenotypes. In this study, we proposed a set-based mixed

effect model for gene-environment interaction (MixGE) on neuroimaging phenotypes,

such as structural volumes and tensor-based morphometry (TBM). MixGE incorporates

both fixed and random effects of G×E to investigate homogeneous and heterogeneous

contributions of multiple genetic variants and their interaction with environmental risks to

phenotypes. We discuss the construction of score statistics for the terms associated

with fixed and random effects of G×E to avoid direct parameter estimation in the

MixGE model, which would greatly increase computational cost. We also describe

how the score statistics can be combined into a single significance value to increase

statistical power. We evaluated MixGE using simulated and real Alzheimer’s Disease

Neuroimaging Initiative (ADNI) data, and showed statistical power superior to other

burden and variance component methods. We then demonstrated the use of MixGE

for exploring the voxelwise effect of G×E on TBM, made feasible by the computational

efficiency of MixGE. Through this, we discovered a potential interaction effect of gene

ABCA7 and cardiovascular risk on local volume change of the right superior parietal

cortex, which warrants further investigation.
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1. INTRODUCTION

Neurodegenerative diseases such as Alzheimer’s disease (AD)
are highly heritable, but how specific genetic variants contribute
to these diseases remains largely undetermined (Pedersen
et al., 2004; Bertram et al., 2010; Ridge et al., 2013).
Neuroimaging has received great attention for understanding
the genetic contribution to psychiatric disorders. It provides
attractive intermediate phenotypes, including brain morphology,
functional activity, and brain wiring, etc, that are closer to
the biology of genetic function than clinical phenotypes of
illnesses or cognitive phenotypes (Hariri et al., 2006; Mattay
et al., 2008; Bigos and Weinberger, 2010). Imaging genetics has
thus become an emerging field for the investigation of neural
mechanisms underlying genetic variation. Imaging genetics aims
to determine how differences in single nucleotide polymorphism
(SNP) lead to differences in brain anatomy and function, and
hence to understand how variants in SNPs lead to diseases.
Although imaging genetics has recently shown great promise
in the domains of studying brain development (Viding et al.,
2006; de Geus et al., 2008; Mattay et al., 2008; Rasch et al.,
2010), as well as psychiatric disorders (Hariri et al., 2006; Meyer-
Lindenberg and Weinberger, 2006; Domschke and Dannlowski,
2010; Durston, 2010; Scharinger et al., 2010; Tost et al., 2012),
studying the link between genetic variants and neuroimaging
phenotypes remains statistically challenging, especially when
dealing with high dimensional neuroimaging data, such as
tensor-based morphometry, whole brain functional activity, etc.
This becomes even more challenging when studying the effect of
G×E on neuroimaging phenotypes.

Genome-wide association studies (GWAS) is a simple and
widely used technique to determine associations between
genetic polymorphisms and neuroimaging phenotypes, such as
structural volumes (Stein et al., 2012). For GWAS, each SNP
is independently tested for association with a scalar measure
using regression models. There are however some limitations
to genome-wide association studies (GWAS). Common genetic
variants only account for a small fraction of the heritability of
brain phenotypes such as hippocampal and subcortical volumes
(Stein et al., 2012; Hibar et al., 2015). “Missing,” or perhaps
“hidden,” heritability may be accounted for by rare variants
(Korte and Farlow, 2013), which are not even considered in
GWAS due to the lack of statistical power (Lee et al., 2014).
Population genetic theory supports the idea that rare variants
may play a significant role in brain-related diseases (Manolio
et al., 2009). But rare variants can only be identified using GWAS

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease

Neuroimaging Initiative; FDA, Food and Drug Administration; FDR, False

discovery rate; GWAS, genome-wide association studies; G×E, gene-environment

interaction; KMM, kernel machine method; MAF, minor allele frequency; MCI,

mild cognitive impairment; MDT, minimal deformation template; MiST, mixed-

effects score test; MixGE, mixed effect model for gene-environment interaction;

MRI, magnetic resonance imaging; NIA, National Institute of Aging; NIBIB,

National Institute of Biomedical Imaging and Bioengineering; PET, positron

emission topography; SBERIA, set-based gene-environment interaction test;

SKAT, sequence kernel association test; SNP, single nucleotide polymorphism;

TBM, tensor-based morphometry.

with a large sample size (Manolio et al., 2009), which is difficult
to achieve in imaging genetics. In fact, even common variants
do not usually pass genome-wide significance if they have very
small effect sizes, after adjusting for the very large number of
variants that are tested (Gibson, 2010). GWAS becomes even
more difficult if voxelwise neuroimaging measures are used
as phenotypes, such as voxelwise GWAS (Stein et al., 2010;
Hibar et al., 2011; Ge et al., 2012; Huang et al., 2015), due to
computational cost and the lack of statistical power.

Set-based association tests are an alternative class of
techniques that are able to overcome the aforementioned
limitations of GWAS with regards to rare variants or common
variants with small effect sizes. In contrast to GWAS, this
class of techniques examines whether a set of genetic variants
is collectively associated with a phenotype. The variant set
can be defined as variants that belong to a particular gene,
pathway, or any other biologically meaningful systems. With a
set-based association test, genetic effects of individual variants
are accumulated within the set into a single large effect, such
that the set could be significantly associated with phenotype
even if the individual variants are not. Furthermore, a set-
based association test reduces the number of independent
statistical tests conducted, which implies less stringent correction
for multiple comparisons than that for GWAS. Lee et al.
(2014) reviewed five different types of set-based association
tests, including burden tests, adaptive burden tests, variance
component tests, combined tests, and Exponential Combination
test. Burden tests, such as Cohort Allelic Sum Test (Morgenthaler
and Thilly, 2007) and Weighted Sum Statistic (Madsen and
Browning, 2009), collapse variants into a burden score, and are
more powerful when a large proportion of the variants in a set is
causal, and the effects are homogeneous (equally deleterious for
example). Adaptive burden tests, such as Data-adaptive Sum Test
(Han and Pan, 2010) and Variable Threshold (Price et al., 2010),
use data adaptive weights, and are more powerful than burden
tests but are computationally intensive. Variance component
tests, such as C-alpha test (Neale et al., 2011) and sequence
kernel association test (SKAT) (Wu et al., 2011), examine the
variance of genetic effects, and are more powerful when the
effects of individual genetic variants are heterogeneous, even
if the variants have opposing directions of effects. Combined
tests – such as Optimal SKAT (Lee et al., 2012), Fisher method
(Derkach et al., 2013), and mixed-effects score test (MiST) (Sun
et al., 2013) – and Exponential Combination test (Chen et al.,
2012) combine burden and variance component tests and hence
incorporate both homogeneous and heterogeneous effects of
individual genetic variants.

Combined tests are generally more desirable because only
mild distributional assumptions are made about the underlying
nature of the effects of individual genetic variants on disease,
which is largely unknown (Lee et al., 2014). For MiST, two score
statistics are derived – one for homogeneous characteristics,
and the other for heterogeneous effects – and both are
easy to calculate under their respective null hypotheses to
test genetic effects on phenotypes. The significance levels of
the score statistics are also easy to determine because their
respective distributions are known under reasonable parametric
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assumptions. In addition, since the two score statistics are
independent of one another, the resulting p-values of the
two score statistics can be combined using simple formulae,
which leads to a single significance value. This results in
the computational efficiency of MiST. MiST is a very general
model that includes burden test and SKAT as special cases.
In comparison with MiST, the weighted linear combination of
SKAT and burden statistics in Optimal SKAT is less ideal, since
the two score statistics are not statistically independent (Sun
et al., 2013). For Fisher method and exponential combination
test, the estimation of the significance level of the statistics is
computationally intensive because the joint distribution of the
statistics is not known and permutation analysis is required (Lee
et al., 2014).

While genetics has significant contributions to many
psychiatric disorders, they are often functional under certain
environment. Indeed, G×E has been shown to be relevant for
many psychiatric disorders (Cadoret et al., 1983; Milberger
et al., 1997; Wahlberg et al., 1997; Yaffe et al., 2000; Eley et al.,
2004; Kim-Cohen et al., 2006). Environmental factors, such as
disease risk factors, could interact with genetic factors to result
in variations in phenotypes. For example, genetics may modulate
the effects of various risk factors on themanifestation of a disease,
causing varying severities of the disease across individuals even
though they may be exposed to the same risk factors. Recently,
G×E has been incorporated into burden tests (Jiao et al., 2013)
and variance component tests (Lin et al., 2013, 2016; Ge et al.,
2015). However, as mentioned earlier, burden tests and variance
component tests make assumptions on the underlying nature of
the effects of individual genetic variants on disease, and these
tests become less powerful when the assumptions do not hold.
There is a need to incorporate burden and variance component
tests for G×E into one statistical model.

The aim of this study is to extend MiST to examine effects
of G×E on neuroimaging phenotypes. We chose MiST because
it has been shown to be consistently more powerful than other
tests, especially at stringent thresholds, while still controlling for
false positive rate (Moutsianas et al., 2015). Another advantage
of MiST is its computational efficiency, which is especially
important for imaging genetics, since this makes the use of
voxelwise neuroimaging measures as phenotypes feasible. Hence,
in this study we proposed a set-based MixGE. MixGE is designed
to incorporate both fixed and random effects of G×E, to
investigate homogeneous and heterogeneous contributions of
sets of genetic variants and their interaction with environmental
risks to phenotypes. In Section 2, we explained theMixGEmodel,
and how the score statistics for the terms associated with fixed
and random effects of G×E were calculated and combined into
a single significance value. We then described the simulated data
generated to test the type 1 error rate, and power of MixGE as
compared to other existing methods. Next we described the real
data used in this study. In brief, we used data from the ADNI
database, including 21 candidate risk genes for late-onset AD as
variant sets, the first principal component of six cardiovascular
disease risk factors as an environmental factor, and hippocampal
volume and TBM as the neuroimaging phenotypes. In Section
3, we showed the results from testing MixGE on simulated data

as well as on the two neuroimaging phenotypes of the ADNI
data. Running MixGE on the first neuroimaging phenotype
of hippocampal volume serves to replicate the results of the
kernel machine method (hereafter referred to as kernel machine
method (KMM) for convenience) of (Ge et al., 2015) as a sanity
check. Running MixGE on the second neuroimaging phenotype
of TBM demonstrated the potential of MixGE for voxelwise
neuroimaging phenotypes of imaging genetics. We implemented
the MixGE model in MATLAB, and the software and demo are
available at http://www.bioeng.nus.edu.sg/cfa/imaginggenetics.
html.

2. MATERIALS AND METHODS

2.1. A Set-Based Mixed Effect Model for
Gene-Environment Interaction (MixGE)
We now introduce a unified set-based mixed effect model
for gene-environment interaction (MixGE). We assume that
there are N unrelated subjects with brain measures, genotyping,
environmental factor, and demographic data. Let yi be a
quantitative brain measure for the ith subject. Let Xi be a m × 1
vector of potential confounding covariates for the ith subject,
such as demographic variables and population stratification. For
simplicity of notation, we incorporate the intercept intoXi. LetGi

be a variant set that is a p×1 vector with the genotypes of p SNPs
for the ith subject. Each SNP takes the values of 0 (homozygotic
major alleles), 1 (heterozygote), or 2 (homozygotic minor alleles).
Let ei be an environmental risk factor for the ith subject. Based on
the above notation, we define the MixGE model as:

g{E(yi)} = XT
i βx+ eiβe+GT

i Wπ (1)+ eiG
T
i Wπ (2)+ eiG

T
i δ . (1)

g(·) is a link function. When yi only takes the values of 0 or
1, g(·) can be a logit function. When yi is continuous, g(·)
can be an identity function. T represents the vector transpose
operation. βx and βe are the regression coefficients for Xi and ei
respectively, where βx is a m × 1 vector and βe is a scalar. W is
a p × q weight matrix based on q variant characteristics (such as
nonsense, missense, insertion, deletion, etc) of p SNPs, if effects
of the various characteristics are expected to be different (Sun
et al., 2013). In the simplest case, W can be a p × 1 vector with
elements of 1/p, which means that all SNPs are equally weighted
according to one common variant characteristic. W can also be
used to exclude SNPs from the model by giving them a weight of
0. π (1) and π (2) are q × 1 vectors and account for fixed effects of
the variant set Gi, and its interaction with an environmental risk
factor ei respectively. On the other hand, δ = [δ1, δ2, · · · , δp]

T is
a p×1 vector and accounts for random effects of individual SNPs
in Gi, and their interaction with the environmental risk factor ei,
that cannot be explained by the fixed effects. We assume that δ

follows a distribution with mean 0 and variance τ 2.
The MixGE model in Equation (1) is a generalized form

of commonly used models such as burden test and SKAT
(Morgenthaler and Thilly, 2007; Madsen and Browning, 2009),
with the addition of G×E. For instance, if heterogeneous effects
of individual SNPs are expected to be subtle, we may assume that
τ 2 = 0. The MixGE model is hence simplified to an interaction
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model of burden test. In particular, when W is set as a p × 1
vector of 1/p, the MixGE model becomes an interaction model
of Cohort Allelic Sum Test (Morgenthaler and Thilly, 2007).
Whereas, when W is set to be a vector of weights, the MixGE
model becomes an interaction model of Weighted Sum Statistic
(Madsen and Browning, 2009). On the other hand, if π (1) and
π (2) are set to zero, this model is equivalent to an interaction
model of SKAT (Wu et al., 2011).

2.2. Score Test Statistics
From the model in Equation (1), our null hypothesis H0

is no interaction effect between the variant set, Gi, and the
environmental factor, ei, on brain measure, yi. The examination
of this null hypothesis is equivalent to showing that π (2) = 0
and τ 2 = 0. We use score statistics to test H0 so that – unlike
the likelihood ratio test – there is no need to estimate τ 2 under
the alternative. Estimating τ 2 can be computationally expensive
as it requires p-dimensional multiple integration. As the score
statistic for π (2) asymptotically follows a normal distribution
and the score statistic for τ 2 asymptotically follows a mixture
of chi-square distributions, it is challenging to derive the joint
distribution of π (2) and τ 2, especially when they are correlated.
We propose a sequential way to calculate the score statistics for
τ 2 and π (2), which will make them independent of one another
and hence make the testing ofH0 feasible. For this, we first derive
the score statistic for the variance component under the null
hypothesis of τ 2 = 0 without assuming that π (2) = 0. We
then derive the score statistic for π (2) under H0. This sequential
derivation ensures the independence of these two score statistics,
which has been proven in Sun et al. (2013).

To simplify notations, we rewrite Equation (1) in the
matrix form. By denoting Y = [y1, y2, · · · , yN]

T , X =

[X1,X2, · · · ,XN]
T , G = [G1,G2, · · · ,GN]

T , and E =

[e1, e2, · · · , eN]
T , Equation (1) can be rewritten as:

g{E(Y)} = Xβx+Eβe+GWπ (1)+diag(E)GWπ (2)+diag(E)Gδ ,
(2)

where diag(·) is the operation of taking the elements in E as the
diagonal elements of an N × N matrix. We now show how to
compute the score statistics for τ 2 and π (2).

First, the score statistic for τ 2 can be calculated as:

Sτ 2 = (Y − µ̂)T diag(E)GGT diag(E) (Y − µ̂) , (3)

where

µ̂ = g−1
(

Xβ̂x + Eβ̂e + GWπ̂ (1) + diag(E)GWπ̂ (2)
)

. (4)

β̂x, β̂e, π̂ (1), and π̂ (2) are the estimates of βx, βe, π (1), and
π (2) respectively under the null hypothesis of τ 2 = 0. These
coefficients can be obtained via solving the least-squares linear
regression of g{E(Y)} = Xβx+Eβe+GWπ (1)+diag(E)GWπ (2).

Under the null hypothesis of τ 2 = 0, Sτ 2 follows a mixture

of chi-square distributions
s

∑

i= 1
λiχ

2
1,i, where λ1 ≥ · · · ≥ λs

are the non-zero eigenvalues of P = D̂ − D̂M(MTD̂M)−1MTD̂
(Zhang and Lin, 2003). D̂ = diag(σ̂1

2, · · · , σ̂N
2), where σ̂i

2 =

N
∑

i= 1
(yi − µ̂i)

2/N when the identity link function is used and

σ̂i
2 = µ̂i(1 − µ̂i) when the logit link function is used.

M = [X, E, GW, diag(E)GW]. This mixture of chi-square
distributions can be approximated using the method in Liu et al.
(2009). We denote the p-value of Sτ 2 as Pτ 2 .

To be more general, when the variances of δj are not expected
to be the same for all j, we can define the variance as ωjτ

2. The
score statistic for ωjτ

2 can be calculated as:

ωSτ 2 = (Y − µ̂)T diag(E)GωGT diag(E) (Y − µ̂) , (5)

with ω = diag(ω1, · · · ,ωp). For instance, ωj can be set to be
negatively correlated with minor allele frequency (MAF) since
by evolutionary theory rarer genetic variants tend to have larger
effect sizes.

Second, we compute the score statistic for π (2) as:

Uπ (2) = (diag(E)GW)T(Y − µ̃) , (6)

where

µ̃ = g−1(Xβ̃x + Eβ̃e + GWπ̃ (1)) . (7)

β̃x, β̃e, and π̃ (1) are the estimates of βx, βe, and π (1) respectively
under the null hypothesis of τ 2 = 0 and π (2) = 0. These
coefficients can be obtained via solving the least-squares linear
regression of g{E(Y)} = Xβx + Eβe + GWπ (1).

Based on the central limit theory and the law of large
number, we can show that 6−1/2Uπ (2) converges to a q-
dimensional normal distribution with mean of zero and
covariance of identity matrix. 6 = (diag(E)GW)T{D̃ −

D̃V(VTD̃V)−1VTD̃}(diag(E)GW), where V = [X, E, GW]. D̃ =

diag(σ̃1
2, · · · , σ̃N

2), where σ̃i
2 =

N
∑

i=1
(yi − µ̃i)

2/N when yi is

continuous and σ̃ 2
i = µ̃i(1 − µ̃i) when yi is binary. To avoid

computing the square root of 6, we compute Uπ (2)6−1Uπ (2) that
follows a χ2 distribution with q degrees of freedom. We denote
the p-value of Uπ (2)6−1Uπ (2) as Pπ (2) .

Based on the above construction, the score statistics of Uπ (2)

and Sτ 2 are statistically independent (Sun et al., 2013). This
independence propertymakes it feasible to combineUπ (2) and Sτ 2

and examine our null hypothesis of τ 2 = 0 and π (2) = 0. Two
possible ways to combine Pπ (2) and Pτ 2 are the Fisher and Tippett
methods (Koziol and Perlman, 1978). For the Fisher method, H0

is rejected if −2 log Pπ (2) − 2 log Pτ 2 ≥ χ2
4,α . Permutation is not

required in this case, unlike in Derkach et al. (2013), because
the two score statistics are independent. For the Tippett method,
H0 is rejected if min(Pπ (2) , Pτ 2 ) ≤ 1 − (1 − α)1/2, where α is
the significance level. The Fisher method is more powerful when
the alternative hypotheses of both score statistics are likely to
be true, whereas the Tippett method is more powerful when the
alternative hypothesis of only one of the two score statistics is
likely to be true.

2.3. Simulation
MixGE was run on simulated data to ensure that it has a
reasonable type 1 error rate, and to compare its power against
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other existing methods. Two separate simulations were carried
out for binary and continuous phenotypes. For binary phenotype,
simulated data were generated according to the following model
adapted from Lin et al. (2013):

logit(Yi) = log
0.01

0.99
+ 0.64Ei +

8
∑

j= 1

ajGij +

8
∑

j= 1

bjEiGij (8)

where i refers to the ith subject, j refers to the jth variant of the
genetic set, Ei ∼ N(0, 1) is an environmental factor, and Gij is
a genetic set generated under Hardy-Weinberg equilibrium with
MAF ∼ U(0, 0.5). How aj and bj were set differs depending on
whether the simulation is for type 1 error or for power, and will
be explained accordingly in the respective subsections 2.3.1 and
2.3.2. The constant coefficients are set to be the same as Lin et al.
(2013). Yi can be generated by taking the logistic of the right
hand side of Equation (8), and using that as the probability of
success for a Bernoulli trial. Success would represent a disease
case subject, whereas failure would represent a control subject.
Simulated subjects were generated until there were sufficient
cases and controls.

For continuous phenotype, simulated data were generated
according to the following model modified from Equation (8):

Yi = 0.64Ei +

8
∑

j= 1

ajGij +

8
∑

j= 1

bjEiGij + ǫ (9)

where ǫ is noise with distribution N(0, σ 2). The intercept term
log(0.01/0.99) found in Equation (8) was removed for Equation
(9) as it models disease prevalence and is thus meaningless for the
continuous phenotype, although the simulation results would not
have been affected even if it were included.

Simulated data were generated separately for small samples
with 200 subjects (100 disease cases and 100 controls) as well
as large samples with 2000 subjects (1000 disease cases and 1000
controls). The reason for simulating small samples is to examine
the behavior of MixGE when the number of subjects available
is small, which is typical for imaging genetics studies. For every
simulated scenario, 10,000 simulations were run.

2.3.1. Type 1 Error Simulation
For type 1 error simulation, awas fixed as [1, 1,−1,−1, 0, 0, 0, 0]T

while b was fixed as zero meaning that there is no G×E
effect. Gij and Ei were regenerated for each simulation. To
determine type 1 error rate, p-values for the G×E effect for 10,000
simulations were calculated. The p-values were then thresholded
at a significance level of 0.05. Type 1 error rate is the proportion
of simulations that pass the significance threshold, even though
there is no G×E effect, out of the total 10,000 simulations run.

2.3.2. Power Simulation
For power simulation, MixGE was compared against two existing
methods: set-based gene-environment interaction test (SBERIA)
(Jiao et al., 2013) and KMM (Ge et al., 2015). These two methods
were chosen as they perform set-based G×E burden and variance
component tests respectively. These methods are hence good

representatives of their respective class of methods, and are good
bases of comparison for MixGE which is a combination test. aj ∼
Bernoulli(0.5)×[1−2×Bernoulli(0.5)]. Three different scenarios
were tested in the power simulation, each with a different b. b
was fixed as C × [1, 1, 1, 1, 1, 1, 1, 1]T for the burden scenario, as
C×[1, 1,−1,−1, 0, 0, 0, 0]T which has zero mean for the variance
component scenario, and as C × [1, 1, 0, 0, 0.5, 0.5, 0.5, 0.5]T for
the mixture of burden and variance component scenario. For
binary phenotype, C is given an arbitrary range of positive values
such that the simulation is within reasonable power range. For
continuous phenotype, C is fixed as 1 while varying the variance
of the Gaussian noise. aj, Gij, and Ei were regenerated for each
simulation. Power in this simulation is defined as the rate at
which the various methods are able to significantly detect G×E
effect, i.e. the proportion of simulations that pass the significance
threshold of 0.05 out of the total 10,0000 simulations run for each
C for each scenario.

2.4. ADNI Data
The neuroimaging data – including hippocampal volumes and
TBM – genetic data, environmental factors, demographic data
are the same as those used in previous studies (Stein et al.,
2010; Hibar et al., 2011; Ge et al., 2012, 2015). We describe the
genetic and neuroimaging data, and their preprocessing steps
below.

The data used in this study were obtained from the ADNI
database http://adni.loni.usc.edu/. ADNI was launched in 2003
by the National Institute of Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year public
private partnership. The primary goal of ADNI has been to test
whether biological markers such as serial magnetic resonance
imaging (MRI) and positron emission topography (PET), and
clinical and neuropsychological assessments can be combined to
measure the progression of mild cognitive impairment (MCI)
and early AD. Determination of sensitive and specific markers
of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials.
ADNI is the result of efforts of many coinvestigators from a
broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the U.S.
and Canada. The initial goal of ADNI was to recruit 800 adults,
ages 55 to 90, to participate in the research approximately 200
cognitively normal older individuals to be followed for 3 years,
400 people with MCI to be followed for 3 years, and 200 people
with early AD to be followed for 2 years (see http://www.adni-
info.org/ for up-to-date information). The data were analyzed
anonymously, using publicly available secondary data from the
ADNI study, therefore no ethics statement is required for this
work.

This study only included 697 subjects (age: 55–91 years) with
MRI scans and genotype, environmental and demographic data.
Among them, there were 295 females and 402males. The amount
of education received by these subjects ranged from 4 to 20
years.

Frontiers in Neuroscience | www.frontiersin.org 5 April 2017 | Volume 11 | Article 191

http://adni.loni.usc.edu/
http://www.adni-info.org/
http://www.adni-info.org/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Wang et al. G×E Set-Based Mixed Effect Model

2.4.1. Environmental Factors
The environmental factors used in this and previous studies (Ge
et al., 2015) are six cardiovascular disease risk variables, including
age, gender, body mass index, systolic blood pressure, current
smoking status and diabetes. These cardiovascular disease risk
factors were chosen as environmental factors because sufficient
evidence suggests that they increase the risk for AD and
accelerate AD progression (Kivipelto et al., 2001; Luchsinger
et al., 2005). For gender, females were given a value of 1 whereas
males were given a value of 0. For current smoking status,
smokers were given a value of 1 whereas non-smokers were given
a value of 0. For diabetes, diabetics were given a value of 1 whereas
non-diabetics were given a value of 0. Here, we performed
principal component analysis on these six environmental
variables. The first principal component accounted for 81.9%
of the total variation of the six environmental variables. It was
used as the environmental factor for MixGE, as MixGE is only
able to accommodate one environmental factor. The loadings of
the six cardiovascular disease risk variables on the first principal
component are 0.213, –0.522, 0.548, 0.301, 0.537, and 0.0424
respectively.

2.4.2. Genotyping and Variant Sets
The genome-wide SNP data was preprocessed according to the
ENIGMA2 1KGP cookbook (v3): http://enigma.ini.usc.edu/wp-
content/uploads/2012/07/ENIGMA2_1KGP_cookbook_v3.pdf.
Twenty-one candidate genes that were previously identified as
risk genes for AD (Lambert et al., 2013; Lu et al., 2014) were used
in this study. These sets of genetic variants were also previously
used to examine the G×E influence on the aging brain (Ge et al.,
2015). The SNPs on the coding regions, as well as 20kb upstream
and downstream of these 21 genes were extracted. The names
of the 21 genes and the number of SNPs for each are listed in
Table 1. The SNPs for each gene were considered as a separate
set of variants. Each of the 21 candidate risk genes were put
through MixGE separately.

2.4.3. MRI Acquisition and Analysis
All ADNI 1.5T structural brain MRI scans were processed
using FreeSurfer (Dale et al., 1999). Intra-cranial volume and
bilateral hippocampal volumes were automatically computed
using FreeSurfer after skull stripping, B1 bias field correction,
segmentation, and labeling (Fischl et al., 2002), and passed
rigorous visual quality control checks (Ge et al., 2015).

The process used to generate the TBM data was described in
(Hua et al., 2008), and is restated here. First, a random subset
of healthy elderly subjects were chosen. The intensities of their
MRI scans were normalized, aligned using a 9 parameter affine
transform, and averaged voxelwise to create an initial affine
average template. The scans of this subset of subjects were then
warped to the affine average template using a non-linear inverse
consistent elastic intensity-based registration algorithm (Leow
et al., 2005), and averaged to create a non-linear average intensity
template. Inverse geometric centering of the displacement fields
to the non-linear average intensity template was performed to
construct the minimal deformation template (MDT). The MDT
serves as an unbiased atlas image to which all other images were

TABLE 1 | Twenty one candidate risk genes for Alzheimer’s disease (AD).

Chromosome Gene Number of SNPs

19 ABCA7 240

2 BIN1 301

20 CASS4 165

6 CD2AP 421

19 CD33 85

11 CELF1 97

8 CLU 116

1 CR1 264

18 DSG2 219

7 EPHA1 115

14 FERMT2 242

6 HLA-DRB5 62

2 INPP5D 495

5 MEF2C 272

11 MS4A6A 63

11 PICALM 360

8 PTK2B 419

4 REST 146

14 SLC24A4 716

11 SORL1 233

7 ZCWPW1 74

transformed using the same non-linear inverse consistent elastic
intensity-based registration algorithm as earlier (Leow et al.,
2005). The determinant of the Jacobianmatrix of the deformation
was computed to assess volumetric tissue difference at each voxel,
which encodes local volume excess or deficit relative to the atlas
image. This volumetric tissue difference relative to the atlas at
each voxel was used as a quantitative measure of brain tissue
volume difference for examining the MixGE. From here on, we
shall refer to “the determinant of the Jacobian matrix of the
deformation” as “local volume change.” There are a total of
2,061,878 voxels per image.

2.5. MixGE Application to Hippocampal
Volume and TBM
We applied MixGE to examine the interactive effect of
cardiovascular risks and AD candidate genes on hippocampal
volume and TBM of the brain using the aforementioned ADNI
dataset. For this, the environmental factor was defined as the first
principal component of the six cardiovascular factors mentioned
earlier. The genes are listed in Table 1.

For TBM, we applied MixGE to the local volume change
measure and examined the null hypothesis H0, at the voxel-
level of the atlas. We then performed false discovery rate (FDR)
adjustment on the obtained p-values, according to the procedure
outlined in Storey (2002). Lastly we thresholded the adjusted
p-values at a significance level of 0.05.

3. RESULTS AND DISCUSSION

In this section, we first present the results of the simulated data
to evaluate the type 1 error rate of MixGE and to compare its
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FIGURE 1 | Results of the type 1 error simulation for continuous phenotype. Type 1 error of mixed effect model for gene-environment interaction (MixGE) (red

solid) as compared to set-based gene-environment interaction test (SBERIA) (Jiao et al., 2013) (green dashed) and kernel machine method (KMM) (Ge et al., 2015)

(blue dot-dashed) at various variance of Gaussian noise added. (A, B) Are for small samples of 200 subjects and large samples of 2,000 subjects, respectively.

power with two existing techniques: SBERIA (Jiao et al., 2013)
and KMM (Ge et al., 2015).

For real ADNI data, we run MixGE on hippocampal volume
to compare with the results obtained by Ge et al. (2015)
using KMM. We then run MixGE on TBM to demonstrate
the potential of MixGE for voxelwise imaging genetics. In
both experiments, intra-cranial volume and education were
considered as covariates in theMixGEmodel, where intra-cranial
volume was automatically calculated by FreeSurfer. Hence, in the
MixGE model, X is a (697 × 3) matrix with the first column
of constant, the second column of intra-cranial volume, and the
third column of education. W is a p × 1 vector with elements of
1/p.

3.1. Simulation Results
3.1.1. Type 1 Error Simulation
According to the simulated data for binary phenotype, MixGE
had type 1 error rates of 0.0479 and 0.0507 for small samples of
200 subjects and large samples of 2000 subjects respectively. The
type 1 error rates for SBERIA (Jiao et al., 2013) were determined
to be 0.0523 and 0.0504 for small samples of 200 subjects and
large samples of 2000 subjects respectively, while that of KMM
(Ge et al., 2015) were determined to be 0.0287 and 0.0751
respectively.

The results for the type 1 error simulation for continuous
phenotype is shown in Figure 1. The type 1 error rates for both
MixGE and SBERIA (Jiao et al., 2013) are close to 0.05 regardless
of the variance of Gaussian noise added. The type 1 error rates
for KMM (Ge et al., 2015) is higher than 0.05 when variance of
Gaussian noise added is low, and drops below 0.05 when variance
of Gaussian noise added is high. Sample size appear to have little
effect on type 1 error rates for continuous phenotype.

These results show that MixGE is a valid method that does not
have an inflated false positive rate.

3.1.2. Power Simulation
For binary phenotype, C is given an arbitrary range of positive
values such that the simulation is within a reasonable power

range. For the burden scenario, C ∈ {0.4, 0.8, 1.2, 1.6, 2} for
small samples of 200 subjects and C ∈ {0.05, 0.1, 0.15, 0.2, 0.25}
for large samples of 2000 subjects. For the variance component
scenario, C ∈ {0.4, 0.8, 1.2, 1.6, 2} for small samples
and C ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for large samples. For
the mixture of burden and variance component scenario,
C ∈ {0.8, 1.6, 2.4, 3.2, 4} for small samples and C ∈

{0.1, 0.2, 0.3, 0.4, 0.5} for large samples. The power of MixGE
as compared to SBERIA (Jiao et al., 2013) and KMM (Ge et al.,
2015) for these three scenarios against these various values of C
are plotted in Figure 2.

Figure 2 shows that in general, when the number of subjects
is small, C has to be much larger in order to detect the
G×E effect. Also, when the number of subjects is small, all
three methods suffer great statistical power loss for the burden
scenario. Furthermore, the power for KMM (Ge et al., 2015)
begins to decrease when C becomes larger than 0.8. This is
probably because of increase in the estimated variance of b as
C increases, thereby causing power loss. The same trends but to
a smaller extent is also observed for the mixture of burden and
variance component scenario, as expected.

We indeed see that SBERIA (Jiao et al., 2013) and KMM
(Ge et al., 2015) performed best for the scenarios that they were
designed for (burden and variance component respectively) but
performed worst for the opposite scenario (variance component
and burden respectively). They both performed somewhat
average for the mixture of burden and variance component
scenario.

MixGE on the other hand performs consistently well for
all three scenarios. For the simulated data with small samples,
MixGE outperformed the other two methods for all scenarios. It
is especially notable, that while MixGE also suffered significant
power loss for the burden scenario, it is by far the least affected
by small sample size as compared to the other two methods.
For the simulated data with large samples, MixGE has more
power than the other two methods for the burden and the
mixture of burden and variance component scenarios. For
the variance component scenario, the performance of MixGE
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FIGURE 2 | Results of the power simulation for binary phenotype. Power of mixed effect model for gene-environment interaction (MixGE) (red solid) as

compared to set-based gene-environment interaction test (SBERIA) (Jiao et al., 2013) (green dashed) and kernel machine method (KMM) (Ge et al., 2015) (blue

dot-dashed) at various values of C. (A, D) Are for the burden scenario for small samples of 200 subjects and large samples of 2,000 subjects, respectively. (B, E) Are

for the variance component scenario for small samples and large samples, respectively. (C, F) Are for the mixture of burden and variance component scenario for

small samples and large samples, respectively.

and KMM (Ge et al., 2015) are very close. KMM (Ge et al.,
2015) slightly outperforms MixGE when the effect size is
smaller, whereas MixGE outperforms KMM (Ge et al., 2015)
when the effect size is larger. This power simulation shows
the strength of MixGE. MixGE exhibits relatively high power

whether for datasets with small or large sample sizes. MixGE
also performs well for all three scenarios, which shows that
MixGE can be applied to any dataset without having to first
make any assumption on the underlying nature of the G×E
effects.
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FIGURE 3 | Results of the power simulation for continuous phenotype. Power of mixed effect model for gene-environment interaction (MixGE) (red solid) as

compared to set-based gene-environment interaction test (SBERIA) (Jiao et al., 2013) (green dashed) and kernel machine method (KMM) (Ge et al., 2015) (blue

dot-dashed) at various variance of Gaussian noise added. (A, D) Are for the burden scenario for small samples of 200 subjects and large samples of 2,000 subjects,

respectively. (B, E) Are for the variance component scenario for small samples and large samples, respectively. (C, F) Are for the mixture of burden and variance

component scenario for small samples and large samples, respectively.

For continuous phenotype, variance of Gaussian noise added
σ 2 ∈ {2, 4, 6, 8, 10} for small samples of 200 subjects
and σ 2 ∈ {8, 16, 24, 32, 40} for large samples of 2000
subjects. The power of MixGE as compared to SBERIA (Jiao
et al., 2013) and KMM (Ge et al., 2015) for these three

scenarios against these various values of σ 2 are plotted in
Figure 3.

Figure 3 shows that in general, when the number of subjects
is small, σ 2 has to be smaller in order to detect the G×E effect.
In all scenarios, MixGE and KMM (Ge et al., 2015) performed
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TABLE 2 | Results of testing mixed effect model for gene-environment interaction (MixGE) with hippocampal volume as phenotype.

Gene Proposed method KMM (Ge et al., 2015)

P
π
(2) P

τ
2 PFisher PTippett Prandom Pall PPC

ABCA7 1.87E-01 4.65E-01 2.99E-01 3.39E-01 1.82E-01 4.79E-01 1.00E00

BIN1 2.88E-01 5.14E-01 4.31E-01 4.93E-01 4.84E-01 1.67E-01 1.00E00

CASS4 5.56E-01 6.60E-01 7.35E-01 8.03E-01 8.28E-01 4.92E-01 1.00E00

CD2AP 6.26E-01 3.76E-01 5.75E-01 6.10E-01 6.60E-01 9.54E-01 1.00E00

CD33 5.40E-01 1.64E-01 3.03E-01 3.00E-01 3.07E-01 8.45E-01 1.00E00

CELF1 8.52E-01 3.92E-02 1.47E-01 7.69E-02 7.08E-02 2.84E-01 1.00E00

CLU 4.78E-01 6.53E-01 6.76E-01 7.28E-01 6.87E-01 6.02E-01 1.00E00

CR1 2.05E-02 1.31E-02 2.48E-03 2.60E-02 1.35E-03 4.85E-04 4.90E-01

DSG2 4.47E-01 1.59E-01 2.59E-01 2.93E-01 2.47E-01 5.66E-01 1.00E00

EPHA1 2.78E-01 3.59E-05 1.25E-04 7.17E-05 4.32E-04 5.64E-04 6.70E-01

FERMT2 7.79E-01 9.71E-01 9.68E-01 9.51E-01 9.98E-01 3.42E-01 1.00E00

HLA-DRB5 3.85E-01 9.37E-01 7.28E-01 6.22E-01 3.58E-01 7.59E-01 1.00E00

INPP5D 2.19E-02 5.66E-01 6.67E-02 4.32E-02 2.00E-01 5.27E-01 1.00E00

MEF2C 4.43E-01 4.43E-01 5.15E-01 6.89E-01 3.62E-01 5.80E-02 1.00E00

MS4A6A 9.46E-01 6.20E-01 8.99E-01 8.55E-01 1.00E00 9.02E-01 1.00E00

PICALM 3.91E-01 2.05E-01 2.82E-01 3.68E-01 2.94E-01 6.79E-01 1.00E00

PTK2B 3.93E-01 2.73E-01 3.46E-01 4.71E-01 4.56E-01 4.60E-01 1.00E00

REST 5.64E-01 6.13E-01 7.13E-01 8.10E-01 5.16E-01 1.89E-01 1.00E00

SLC24A4 2.15E-01 2.13E-01 1.87E-01 3.81E-01 8.84E-02 2.11E-01 1.00E00

SORL1 4.90E-01 6.39E-01 6.77E-01 7.40E-01 8.01E-01 9.19E-01 1.00E00

ZCWPW1 4.14E-01 7.82E-01 6.89E-01 6.57E-01 4.53E-01 2.65E-01 1.00E00

The numerical values are p-values, and the significant p-values after Bonferroni correction (<0.00238) are in bold. The fifth column Prandom under the heading of “Proposed method”

is the p-values of the score statistics of random effects without taking into account fixed effects, which is equivalent to sequence kernel association test (SKAT) with gene-environment

interaction (G×E). It is a special case of MixGE and is shown here for illustration purposes only, and is not used in the computation of PFisher or PTippett. The first column Pall under the

heading of “kernel machine method (KMM)” is the p-values obtained using Ge et al. (2015) with all six cardiovascular disease risk factors as environmental factors, while the second

column is obtained using only the first principal component of the six cardiovascular risk factors.

TABLE 3 | Significant clusters of gene-environment interaction (G×E) on

tensor-based morphometry (TBM), the brain regions in which the clusters

were found, and the sizes of the clusters.

Gene Brain region Cluster size

EPHA1 Right inferior lateral ventricle and posterior hippocampus 2,089

ABCA7 Right superior parietal cortex 2,387

Significant clusters were found for the variant sets of EPHA1 and ABCA7 after false

discovery rate (FDR) correction.

similarly, with MixGE having slightly more power than KMM
(Ge et al., 2015). On the other hand, SBERIA (Jiao et al., 2013)
performed poorly as compared to the other two methods.

3.2. Hippocampal Volume
In this experiment, we employed MixGE and KMM (Ge et al.,
2015) to investigate the interactive effect of individual variant
sets listed in Table 1 with cardiovascular risks on hippocampal
volume. Y therefore represents hippocampal volume. For MixGE
the first principal component of the six cardiovascular risk factors
was used as the environmental factor, as MixGE is only able to
accommodate one environmental factor. Columns of PFisher and
PTippett in Table 2, respectively, show the results from the MixGE
model based on the Fisher and Tippett methods for combining

the p-values of the two score statistics. Additionally, in Table 2,
column Pπ (2) is equivalent to a burden test with G×E, and
column PRandom is equivalent to SKAT with G×E. On the other
hand, the column Pall shows the results of KMM (Ge et al., 2015)
with all six cardiovascular risk factors as environmental factors,
and column PPC shows the results of KMM (Ge et al., 2015) with
the first principal component as the only environmental factor.

From Table 2, SKAT with G×E, KMM (Ge et al., 2015),
and MixGE, revealed the significant interactive effect of EPHA1
and the cardiovascular risks on the hippocampal volume with
the smallest p-value given by MixGE. SKAT and KMM (Ge
et al., 2015) also revealed the significant interactive effect of
CR1 with the cardiovascular risks on hippocampal volume.
However, MixGE failed to detect such an interactive effect after
Bonferroni correction. As mentioned earlier, the MixGE method
is most powerful when the G×E comprises a good mixture of
fixed and random effects. If the interaction is predominantly
of random effects, then MixGE could become weaker than the
variance component methods. This is a slight limitation of
MixGE, in exchange for the benefit of not having to make any
assumptions of the effects of G×E on phenotypes, which is largely
unknown. Another point to note is that MixGE is only able to
accommodate one environmental factor, which in this case is the
first principal component of the six cardiovascular risk factors
that only accounts for 81.9% of the total variation of all six factors.
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FIGURE 4 | False discovery rate (FDR) adjusted statistical maps for the effect of gene-environment interaction (G×E) on tensor-based

morphometry (TBM). From top to bottom, the panels, respectively, show the statistical maps for the variant sets of EPHA1 and ABCA7.

Weaker statistical power in the MixGE method could be due to
loss of variance in the environmental factor, which is a limitation
of the MixGE method in comparison with KMM (Ge et al.,
2015). When the first principal component was used as the only
environmental factor for KMM (Ge et al., 2015), no significant
results were obtained at all.

3.3. TBM
In this experiment, we employed MixGE to examine the
interactive effect of individual variant sets listed in Table 1 with
cardiovascular risks on TBM. In particular, we describe our
findings using the Fisher combined score method below. It took
< 7 min to perform the computation for each variant set on a
consumer grade laptop. On the other hand, it would take an
estimated 90 days to perform the same computation using KMM
(Ge et al., 2015).

MixGE first discovered the interactive effect of EPHA1 and
cardiovascular risk on local volume change of the right inferior
lateral ventricle and the right posterior hippocampus (Table 3).
The TBM analysis provided additional information of anatomical
location and demonstrated the coherent influence of the G×E
on these two adjacent structures (Figure 4). This finding is in
line with the result on hippocampal volume, suggesting the
robustness and statistical power of the MixGE model. This
finding is also consistent with previous finding of the effect of
EPHA1 on hippocampal volume in MCI (Wang et al., 2015).

MixGE further revealed the interactive effect of ABCA7
and cardiovascular risk on local volume change of the right
superior parietal cortex (Table 3). ABCA7 (ATP-binding cassette
sub-family A member 7) is a transmembrane transporter that
mediates the biogenesis of high-density lipoprotein (Tanaka et al.,

2011), and has the capacity to stimulate cellular cholesterol efflux
and regulate amyloid precursor protein processing resulting in an
inhibition of β-amyloid production (Chan et al., 2008). ABCA7
is involved in lipid metabolism and transport, and is a possible
link between cardiovascular risk factors and AD (Stampfer, 2006;
Jones et al., 2010; Reitz et al., 2013). Furthermore, ABCA7 has
been shown to be nominally associated with the brain atrophy in
the posterior portion of the cerebral cortex (Carrasquillo et al.,
2014), which is consistent with the significant cluster identified
in this study.

4. CONCLUSIONS

In summary, we proposed the MixGE method to examine the
effect of G×E on neuroimaging phenotypes. In particular, the
MixGE model incorporates both fixed and random effects of
the G×E, which is superior to burden and variance component
tests, since for MixGE no assumptions have to be made of
the effects of G×E on phenotypes, which is largely unknown.
We evaluated MixGE with simulated data and showed that it
controlled well for type 1 error. MixGE also had more statistical
power than the other two methods that were compared, SBERIA
(Jiao et al., 2013) and KMM (Ge et al., 2015), in all simulated
scenarios. Furthermore, KMM (Ge et al., 2015) did not seem
to control well for type 1 error. We also demonstrated the use
of MixGE on real ADNI data with brain structural volumes
and TBM as phenotypes. Our results showed consistent findings
across the hippocampal volume and TBM measures, suggesting
the robustness of the MixGE model. MixGE further revealed
the interactive effect of ABCA7 and cardiovascular risk on local
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volume change of the right superior parietal cortex. This is a
potential new discovery that warrants further investigation. The
computational efficiency of MixGEmade it feasible for MixGE to
be used on voxelwise phenotypes such as TBM in the first place.
It took < 7 min to perform the computation for each variant set
on a consumer grade laptop. On the other hand, it would take an
estimated 90 days to perform the same computation using KMM
(Ge et al., 2015).

The MixGE model proposed in this study can only
accommodate one environmental factor for a gene set and
environment interaction, which is less flexible in comparison
with KMM (Ge et al., 2015). Nevertheless, for clinical
applications, it is often important to understand how individual
environmental factors interact with gene on clinical phenotypes
rather than all together.
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